Moraxella catarrhalis Binds Plasminogen To Evade Host Innate Immunity.
نویسندگان
چکیده
Several bacterial species recruit the complement regulators C4b-binding protein, factor H, and vitronectin, resulting in resistance against the bactericidal activity of human serum. It was recently demonstrated that bacteria also bind plasminogen, which is converted to plasmin that degrades C3b and C5. In this study, we found that a series of clinical isolates (n = 58) of the respiratory pathogen Moraxella catarrhalis, which is commonly isolated from preschool children and adults with chronic obstructive pulmonary disease (COPD), significantly binds human plasminogen. Ubiquitous surface protein A2 (UspA2) and hybrid UspA2 (UspA2H) were identified as the plasminogen-binding factors in the outer membrane proteome of Moraxella. Furthermore, expression of a series of truncated recombinant UspA2 and UspA2H proteins followed by a detailed analysis of protein-protein interactions suggested that the N-terminal head domains bound to the kringle domains of plasminogen. The binding affinity constant (KD) values of full-length UspA2(30-539) (amino acids 30 to 539 of UspA2) and full-length UspA2H(50-720) for immobilized plasminogen were 4.8 × 10(-8) M and 3.13 × 10(-8) M, respectively, as measured by biolayer interferometry. Plasminogen bound to intact M. catarrhalis or to recombinant UspA2/UspA2H was readily accessible for a urokinase plasminogen activator that converted the zymogen into active plasmin, as verified by the specific substrate S-2251 and a degradation assay with fibrinogen. Importantly, plasmin bound at the bacterial surface also degraded C3b and C5, which consequently may contribute to reduced bacterial killing. Our findings suggest that binding of plasminogen to M. catarrhalis may lead to increased virulence and, hence, more efficient colonization of the host.
منابع مشابه
Collagen VI Is Upregulated in COPD and Serves Both as an Adhesive Target and a Bactericidal Barrier for Moraxella catarrhalis.
Moraxella catarrhalis is a Gram-negative human mucosal commensal and pathogen. It is a common cause of exacerbation in chronic obstructive pulmonary disease (COPD). During the process of infection, host colonization correlates with recognition of host molecular patterns. Importantly, in COPD patients with compromised epithelial integrity the underlying extracellular matrix is exposed and provid...
متن کاملIonic binding of C3 to the human pathogen Moraxella catarrhalis is a unique mechanism for combating innate immunity.
Moraxella catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) interfere with the classical pathway of the complement system by binding C4b-binding protein. In this study we demonstrate that M. catarrhalis UspA1 and A2 noncovalently and in a dose-dependent manner bind both the third component of complement (C3) from EDTA-treated serum and methylamine-treated C3. In contrast, related Mor...
متن کاملMoraxella catarrhalis Activates Murine Macrophages through Multiple Toll Like Receptors and Has Reduced Clearance in Lungs from TLR4 Mutant Mice
Moraxella catarrhalis is a gram negative bacterium and a leading causative agent of otitis media (OM) in children. Several recent reports have provided strong evidence for an association between toll like receptors and OM. It has been found that both Streptococcus pneumoniae and nontypeable Haemophilus influenzae activate host protective immune responses through toll like receptors (TLRs), howe...
متن کاملAdenovirus serotype 1 does not act synergistically with Moraxella (Branhamella) catarrhalis to induce otitis media in the chinchilla.
A chinchilla model of otitis media in which adenovirus compromise of the tubotympanum facilitates the subsequent induction of middle ear disease was used to investigate Moraxella (Branhamella) catarrhalis pathogenesis. Intranasally inoculated M. catarrhalis did readily colonize the nasopharynx of this host; however, despite evidence of viral infection and tubotympanal compromise, M. catarrhalis...
متن کاملMetabolic analysis of Moraxella catarrhalis and the effect of selected in vitro growth conditions on global gene expression.
The nucleotide sequence from the genome of Moraxella catarrhalis ATCC 43617 was annotated and used both to assess the metabolic capabilities and limitations of this bacterium and to design probes for a DNA microarray. An absence of gene products for utilization of exogenous carbohydrates was noteworthy and could be correlated with published phenotypic data. Gene products necessary for aerobic e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 83 9 شماره
صفحات -
تاریخ انتشار 2015